logo头像
Snippet 博客主题

Hive学习之路 (十五)Hive分析窗口函数(三) CUME_DIST和PERCENT_RANK

** Hive学习之路 (十五)Hive分析窗口函数(三) CUME_DIST和PERCENT_RANK:** <Excerpt in index | 首页摘要>

​ Hive学习之路 (十五)Hive分析窗口函数(三) CUME_DIST和PERCENT_RANK

<The rest of contents | 余下全文>

数据准备

数据格式

cookie3.txt

1
2
3
4
5
d1,user1,1000
d1,user2,2000
d1,user3,3000
d2,user4,4000
d2,user5,5000

创建表

1
2
3
4
5
6
use cookie;
drop table if exists cookie3;
create table cookie3(dept string, userid string, sal int)
row format delimited fields terminated by ',';
load data local inpath "/home/hadoop/cookie3.txt" into table cookie3;
select * from cookie3;

img

玩一玩CUME_DIST

说明

CUME_DIST :小于等于当前值的行数/分组内总行数

查询语句

比如,统计小于等于当前薪水的人数,所占总人数的比例

1
2
3
4
5
6
7
select 
dept,
userid,
sal,
cume_dist() over (order by sal) as rn1,
cume_dist() over (partition by dept order by sal) as rn2
from cookie.cookie3;

查询结果

img

结果说明

1
2
3
4
5
rn1: 没有partition,所有数据均为1组,总行数为5,
第一行:小于等于1000的行数为1,因此,1/5=0.2
第三行:小于等于3000的行数为3,因此,3/5=0.6
rn2: 按照部门分组,dpet=d1的行数为3,
第二行:小于等于2000的行数为2,因此,2/3=0.6666666666666666

玩一玩PERCENT_RANK

说明

–PERCENT_RANK :分组内当前行的RANK值-1/分组内总行数-1

查询语句

1
2
3
4
5
6
7
8
9
10
11
select 
dept,
userid,
sal,
percent_rank() over (order by sal) as rn1, --分组内
rank() over (order by sal) as rn11, --分组内的rank值
sum(1) over (partition by null) as rn12, --分组内总行数
percent_rank() over (partition by dept order by sal) as rn2,
rank() over (partition by dept order by sal) as rn21,
sum(1) over (partition by dept) as rn22
from cookie.cookie3;

查询结果

img

结果说明

–PERCENT_RANK :分组内当前行的RANK值-1/分组内总行数-1

rn1 == (rn11-1) / (rn12-1)

rn2 == (rn21-1) / (rn22-1)

1
2
3
4
5
6
7
8
rn1: rn1 = (rn11-1) / (rn12-1) 
第一行,(1-1)/(5-1)=0/4=0
第二行,(2-1)/(5-1)=1/4=0.25
第四行,(4-1)/(5-1)=3/4=0.75
rn2: 按照dept分组,
dept=d1的总行数为3
第一行,(1-1)/(3-1)=0
第三行,(3-1)/(3-1)=1