logo头像
Snippet 博客主题

Sqoop学习之路

** Sqoop学习之路:** <Excerpt in index | 首页摘要>

​ Sqoop学习之路 (一)

<The rest of contents | 余下全文>

一、概述

sqoop 是 apache 旗下一款“Hadoop 和关系数据库服务器之间传送数据”的工具。

核心的功能有两个:

导入、迁入

导出、迁出

导入数据:MySQL,Oracle 导入数据到 Hadoop 的 HDFS、HIVE、HBASE 等数据存储系统

导出数据:从 Hadoop 的文件系统中导出数据到关系数据库 mysql 等 Sqoop 的本质还是一个命令行工具,和 HDFS,Hive 相比,并没有什么高深的理论。

sqoop:

工具:本质就是迁移数据, 迁移的方式:就是把sqoop的迁移命令转换成MR程序

hive

工具,本质就是执行计算,依赖于HDFS存储数据,把SQL转换成MR程序

img

二、工作机制

将导入或导出命令翻译成 MapReduce 程序来实现 在翻译出的 MapReduce 中主要是对 InputFormat 和 OutputFormat 进行定制

三、安装

1、前提概述

将来sqoop在使用的时候有可能会跟那些系统或者组件打交道?

HDFS, MapReduce, YARN, ZooKeeper, Hive, HBase, MySQL

sqoop就是一个工具, 只需要在一个节点上进行安装即可。

补充一点: 如果你的sqoop工具将来要进行hive或者hbase等等的系统和MySQL之间的交互

你安装的SQOOP软件的节点一定要包含以上你要使用的集群或者软件系统的安装包

补充一点: 将来要使用的azakban这个软件 除了会调度 hadoop的任务或者hbase或者hive的任务之外, 还会调度sqoop的任务

azkaban这个软件的安装节点也必须包含以上这些软件系统的客户端/2、

2、软件下载

下载地址http://mirrors.hust.edu.cn/apache/

img

sqoop版本说明

绝大部分企业所使用的sqoop的版本都是 sqoop1

sqoop-1.4.6 或者 sqoop-1.4.7 它是 sqoop1

sqoop-1.99.4—-都是 sqoop2

此处使用sqoop-1.4.6版本sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz

3、安装步骤

(1)上传解压缩安装包到指定目录

因为之前hive只是安装在hadoop3机器上,所以sqoop也同样安装在hadoop3机器上

1
[hadoop@hadoop3 ~]$ tar -zxvf sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz -C apps/

(2)进入到 conf 文件夹,找到 sqoop-env-template.sh,修改其名称为 sqoop-env.sh cd conf

1
2
3
4
5
6
7
8
9
[hadoop@hadoop3 ~]$ cd apps/
[hadoop@hadoop3 apps]$ ls
apache-hive-2.3.3-bin hadoop-2.7.5 hbase-1.2.6 sqoop-1.4.6.bin__hadoop-2.0.4-alpha zookeeper-3.4.10
[hadoop@hadoop3 apps]$ mv sqoop-1.4.6.bin__hadoop-2.0.4-alpha/ sqoop-1.4.6
[hadoop@hadoop3 apps]$ cd sqoop-1.4.6/conf/
[hadoop@hadoop3 conf]$ ls
oraoop-site-template.xml sqoop-env-template.sh sqoop-site.xml
sqoop-env-template.cmd sqoop-site-template.xml
[hadoop@hadoop3 conf]$ mv sqoop-env-template.sh sqoop-env.sh

(3)修改 sqoop-env.sh

1
[hadoop@hadoop3 conf]$ vi sqoop-env.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
export HADOOP_COMMON_HOME=/home/hadoop/apps/hadoop-2.7.5

#Set path to where hadoop-*-core.jar is available
export HADOOP_MAPRED_HOME=/home/hadoop/apps/hadoop-2.7.5

#set the path to where bin/hbase is available
export HBASE_HOME=/home/hadoop/apps/hbase-1.2.6

#Set the path to where bin/hive is available
export HIVE_HOME=/home/hadoop/apps/apache-hive-2.3.3-bin

#Set the path for where zookeper config dir is
export ZOOCFGDIR=/home/hadoop/apps/zookeeper-3.4.10/conf

为什么在sqoop-env.sh 文件中会要求分别进行 common和mapreduce的配置呢???

在apache的hadoop的安装中;四大组件都是安装在同一个hadoop_home中的

但是在CDH, HDP中, 这些组件都是可选的。

在安装hadoop的时候,可以选择性的只安装HDFS或者YARN,

CDH,HDP在安装hadoop的时候,会把HDFS和MapReduce有可能分别安装在不同的地方。

(4)加入 mysql 驱动包到 sqoop1.4.6/lib 目录下

1
[hadoop@hadoop3 ~]$ cp mysql-connector-java-5.1.40-bin.jar apps/sqoop-1.4.6/lib/

img

(5)配置系统环境变量

1
2
3
4
[hadoop@hadoop3 ~]$ vi .bashrc 
#Sqoop
export SQOOP_HOME=/home/hadoop/apps/sqoop-1.4.6
export PATH=$PATH:$SQOOP_HOME/bin

img

保存退出使其立即生效

1
[hadoop@hadoop3 ~]$ source .bashrc

(6)验证安装是否成功

sqoop-version 或者 sqoop version

img

四、Sqoop的基本命令

基本操作

首先,我们可以使用 sqoop help 来查看,sqoop 支持哪些命令

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
[hadoop@hadoop3 ~]$ sqoop help
Warning: /home/hadoop/apps/sqoop-1.4.6/../hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
Warning: /home/hadoop/apps/sqoop-1.4.6/../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
18/04/12 13:37:19 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
usage: sqoop COMMAND [ARGS]

Available commands:
codegen Generate code to interact with database records
create-hive-table Import a table definition into Hive
eval Evaluate a SQL statement and display the results
export Export an HDFS directory to a database table
help List available commands
import Import a table from a database to HDFS
import-all-tables Import tables from a database to HDFS
import-mainframe Import datasets from a mainframe server to HDFS
job Work with saved jobs
list-databases List available databases on a server
list-tables List available tables in a database
merge Merge results of incremental imports
metastore Run a standalone Sqoop metastore
version Display version information

See 'sqoop help COMMAND' for information on a specific command.
[hadoop@hadoop3 ~]$

然后得到这些支持了的命令之后,如果不知道使用方式,可以使用 sqoop command 的方式 来查看某条具体命令的使用方式,比如:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
[hadoop@hadoop3 ~]$ sqoop help import
Warning: /home/hadoop/apps/sqoop-1.4.6/../hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
Warning: /home/hadoop/apps/sqoop-1.4.6/../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
18/04/12 13:38:29 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
usage: sqoop import [GENERIC-ARGS] [TOOL-ARGS]

Common arguments:
--connect <jdbc-uri> Specify JDBC connect
string
--connection-manager <class-name> Specify connection manager
class name
--connection-param-file <properties-file> Specify connection
parameters file
--driver <class-name> Manually specify JDBC
driver class to use
--hadoop-home <hdir> Override
$HADOOP_MAPRED_HOME_ARG
--hadoop-mapred-home <dir> Override
$HADOOP_MAPRED_HOME_ARG
--help Print usage instructions
-P Read password from console
--password <password> Set authentication
password
--password-alias <password-alias> Credential provider
password alias
--password-file <password-file> Set authentication
password file path
--relaxed-isolation Use read-uncommitted
isolation for imports
--skip-dist-cache Skip copying jars to
distributed cache
--username <username> Set authentication
username
--verbose Print more information
while working

Import control arguments:
--append Imports data
in append
mode
--as-avrodatafile Imports data
to Avro data
files
--as-parquetfile Imports data
to Parquet
files
--as-sequencefile Imports data
to
SequenceFile
s
--as-textfile Imports data
as plain
text
(default)
--autoreset-to-one-mapper Reset the
number of
mappers to
one mapper
if no split
key
available
--boundary-query <statement> Set boundary
query for
retrieving
max and min
value of the
primary key
--columns <col,col,col...> Columns to
import from
table
--compression-codec <codec> Compression
codec to use
for import
--delete-target-dir Imports data
in delete
mode
--direct Use direct
import fast
path
--direct-split-size <n> Split the
input stream
every 'n'
bytes when
importing in
direct mode
-e,--query <statement> Import
results of
SQL
'statement'
--fetch-size <n> Set number
'n' of rows
to fetch
from the
database
when more
rows are
needed
--inline-lob-limit <n> Set the
maximum size
for an
inline LOB
-m,--num-mappers <n> Use 'n' map
tasks to
import in
parallel
--mapreduce-job-name <name> Set name for
generated
mapreduce
job
--merge-key <column> Key column
to use to
join results
--split-by <column-name> Column of
the table
used to
split work
units
--table <table-name> Table to
read
--target-dir <dir> HDFS plain
table
destination
--validate Validate the
copy using
the
configured
validator
--validation-failurehandler <validation-failurehandler> Fully
qualified
class name
for
ValidationFa
ilureHandler
--validation-threshold <validation-threshold> Fully
qualified
class name
for
ValidationTh
reshold
--validator <validator> Fully
qualified
class name
for the
Validator
--warehouse-dir <dir> HDFS parent
for table
destination
--where <where clause> WHERE clause
to use
during
import
-z,--compress Enable
compression

Incremental import arguments:
--check-column <column> Source column to check for incremental
change
--incremental <import-type> Define an incremental import of type
'append' or 'lastmodified'
--last-value <value> Last imported value in the incremental
check column

Output line formatting arguments:
--enclosed-by <char> Sets a required field enclosing
character
--escaped-by <char> Sets the escape character
--fields-terminated-by <char> Sets the field separator character
--lines-terminated-by <char> Sets the end-of-line character
--mysql-delimiters Uses MySQL's default delimiter set:
fields: , lines: \n escaped-by: \
optionally-enclosed-by: '
--optionally-enclosed-by <char> Sets a field enclosing character

Input parsing arguments:
--input-enclosed-by <char> Sets a required field encloser
--input-escaped-by <char> Sets the input escape
character
--input-fields-terminated-by <char> Sets the input field separator
--input-lines-terminated-by <char> Sets the input end-of-line
char
--input-optionally-enclosed-by <char> Sets a field enclosing
character

Hive arguments:
--create-hive-table Fail if the target hive
table exists
--hive-database <database-name> Sets the database name to
use when importing to hive
--hive-delims-replacement <arg> Replace Hive record \0x01
and row delimiters (\n\r)
from imported string fields
with user-defined string
--hive-drop-import-delims Drop Hive record \0x01 and
row delimiters (\n\r) from
imported string fields
--hive-home <dir> Override $HIVE_HOME
--hive-import Import tables into Hive
(Uses Hive's default
delimiters if none are
set.)
--hive-overwrite Overwrite existing data in
the Hive table
--hive-partition-key <partition-key> Sets the partition key to
use when importing to hive
--hive-partition-value <partition-value> Sets the partition value to
use when importing to hive
--hive-table <table-name> Sets the table name to use
when importing to hive
--map-column-hive <arg> Override mapping for
specific column to hive
types.

HBase arguments:
--column-family <family> Sets the target column family for the
import
--hbase-bulkload Enables HBase bulk loading
--hbase-create-table If specified, create missing HBase tables
--hbase-row-key <col> Specifies which input column to use as the
row key
--hbase-table <table> Import to <table> in HBase

HCatalog arguments:
--hcatalog-database <arg> HCatalog database name
--hcatalog-home <hdir> Override $HCAT_HOME
--hcatalog-partition-keys <partition-key> Sets the partition
keys to use when
importing to hive
--hcatalog-partition-values <partition-value> Sets the partition
values to use when
importing to hive
--hcatalog-table <arg> HCatalog table name
--hive-home <dir> Override $HIVE_HOME
--hive-partition-key <partition-key> Sets the partition key
to use when importing
to hive
--hive-partition-value <partition-value> Sets the partition
value to use when
importing to hive
--map-column-hive <arg> Override mapping for
specific column to
hive types.

HCatalog import specific options:
--create-hcatalog-table Create HCatalog before import
--hcatalog-storage-stanza <arg> HCatalog storage stanza for table
creation

Accumulo arguments:
--accumulo-batch-size <size> Batch size in bytes
--accumulo-column-family <family> Sets the target column family for
the import
--accumulo-create-table If specified, create missing
Accumulo tables
--accumulo-instance <instance> Accumulo instance name.
--accumulo-max-latency <latency> Max write latency in milliseconds
--accumulo-password <password> Accumulo password.
--accumulo-row-key <col> Specifies which input column to
use as the row key
--accumulo-table <table> Import to <table> in Accumulo
--accumulo-user <user> Accumulo user name.
--accumulo-visibility <vis> Visibility token to be applied to
all rows imported
--accumulo-zookeepers <zookeepers> Comma-separated list of
zookeepers (host:port)

Code generation arguments:
--bindir <dir> Output directory for compiled
objects
--class-name <name> Sets the generated class name.
This overrides --package-name.
When combined with --jar-file,
sets the input class.
--input-null-non-string <null-str> Input null non-string
representation
--input-null-string <null-str> Input null string representation
--jar-file <file> Disable code generation; use
specified jar
--map-column-java <arg> Override mapping for specific
columns to java types
--null-non-string <null-str> Null non-string representation
--null-string <null-str> Null string representation
--outdir <dir> Output directory for generated
code
--package-name <name> Put auto-generated classes in
this package

Generic Hadoop command-line arguments:
(must preceed any tool-specific arguments)
Generic options supported are
-conf <configuration file> specify an application configuration file
-D <property=value> use value for given property
-fs <local|namenode:port> specify a namenode
-jt <local|resourcemanager:port> specify a ResourceManager
-files <comma separated list of files> specify comma separated files to be copied to the map reduce cluster
-libjars <comma separated list of jars> specify comma separated jar files to include in the classpath.
-archives <comma separated list of archives> specify comma separated archives to be unarchived on the compute machines.

The general command line syntax is
bin/hadoop command [genericOptions] [commandOptions]


At minimum, you must specify --connect and --table
Arguments to mysqldump and other subprograms may be supplied
after a '--' on the command line.
[hadoop@hadoop3 ~]$

示例

列出MySQL数据有哪些数据库

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
[hadoop@hadoop3 ~]$ sqoop list-databases \
> --connect jdbc:mysql://hadoop1:3306/ \
> --username root \
> --password root
Warning: /home/hadoop/apps/sqoop-1.4.6/../hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
Warning: /home/hadoop/apps/sqoop-1.4.6/../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
18/04/12 13:43:51 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
18/04/12 13:43:51 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
18/04/12 13:43:51 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
information_schema
hivedb
mysql
performance_schema
test
[hadoop@hadoop3 ~]$

img

列出MySQL中的某个数据库有哪些数据表:

1
2
3
4
[hadoop@hadoop3 ~]$ sqoop list-tables **
> --connect jdbc:mysql://hadoop1:3306/mysql **
> --username root **
> --password root**
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
[hadoop@hadoop3 ~]$ sqoop list-tables \
> --connect jdbc:mysql://hadoop1:3306/mysql \
> --username root \
> --password root
Warning: /home/hadoop/apps/sqoop-1.4.6/../hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
Warning: /home/hadoop/apps/sqoop-1.4.6/../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
18/04/12 13:46:21 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
18/04/12 13:46:21 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
18/04/12 13:46:21 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
columns_priv
db
event
func
general_log
help_category
help_keyword
help_relation
help_topic
innodb_index_stats
innodb_table_stats
ndb_binlog_index
plugin
proc
procs_priv
proxies_priv
servers
slave_master_info
slave_relay_log_info
slave_worker_info
slow_log
tables_priv
time_zone
time_zone_leap_second
time_zone_name
time_zone_transition
time_zone_transition_type
user
[hadoop@hadoop3 ~]$

创建一张跟mysql中的help_keyword表一样的hive表hk:

1
2
3
4
5
6
sqoop create-hive-table \
--connect jdbc:mysql://hadoop1:3306/mysql \
--username root \
--password root \
--table help_keyword \
--hive-table hk
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
[hadoop@hadoop3 ~]$ sqoop create-hive-table \
> --connect jdbc:mysql://hadoop1:3306/mysql \
> --username root \
> --password root \
> --table help_keyword \
> --hive-table hk
Warning: /home/hadoop/apps/sqoop-1.4.6/../hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
Warning: /home/hadoop/apps/sqoop-1.4.6/../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
18/04/12 13:50:20 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
18/04/12 13:50:20 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
18/04/12 13:50:20 INFO tool.BaseSqoopTool: Using Hive-specific delimiters for output. You can override
18/04/12 13:50:20 INFO tool.BaseSqoopTool: delimiters with --fields-terminated-by, etc.
18/04/12 13:50:20 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
18/04/12 13:50:21 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `help_keyword` AS t LIMIT 1
18/04/12 13:50:21 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `help_keyword` AS t LIMIT 1
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/home/hadoop/apps/hadoop-2.7.5/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/home/hadoop/apps/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
18/04/12 13:50:23 INFO hive.HiveImport: Loading uploaded data into Hive
18/04/12 13:50:34 INFO hive.HiveImport: SLF4J: Class path contains multiple SLF4J bindings.
18/04/12 13:50:34 INFO hive.HiveImport: SLF4J: Found binding in [jar:file:/home/hadoop/apps/apache-hive-2.3.3-bin/lib/log4j-slf4j-impl-2.6.2.jar!/org/slf4j/impl/StaticLoggerBinder.class]
18/04/12 13:50:34 INFO hive.HiveImport: SLF4J: Found binding in [jar:file:/home/hadoop/apps/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
18/04/12 13:50:34 INFO hive.HiveImport: SLF4J: Found binding in [jar:file:/home/hadoop/apps/hadoop-2.7.5/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
18/04/12 13:50:34 INFO hive.HiveImport: SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
18/04/12 13:50:34 INFO hive.HiveImport: SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
18/04/12 13:50:36 INFO hive.HiveImport:
18/04/12 13:50:36 INFO hive.HiveImport: Logging initialized using configuration in jar:file:/home/hadoop/apps/apache-hive-2.3.3-bin/lib/hive-common-2.3.3.jar!/hive-log4j2.properties Async: true
18/04/12 13:50:50 INFO hive.HiveImport: OK
18/04/12 13:50:50 INFO hive.HiveImport: Time taken: 11.651 seconds
18/04/12 13:50:51 INFO hive.HiveImport: Hive import complete.
[hadoop@hadoop3 ~]$

五、Sqoop的数据导入

“导入工具”导入单个表从 RDBMS 到 HDFS。表中的每一行被视为 HDFS 的记录。所有记录 都存储为文本文件的文本数据(或者 Avro、sequence 文件等二进制数据)

1、从RDBMS导入到HDFS中

语法格式

1
sqoop import (generic-args) (import-args)

常用参数

1
2
3
4
5
6
7
8
9
10
--connect <jdbc-uri> jdbc 连接地址
--connection-manager <class-name> 连接管理者
--driver <class-name> 驱动类
--hadoop-mapred-home <dir> $HADOOP_MAPRED_HOME
--help help 信息
-P 从命令行输入密码
--password <password> 密码
--username <username> 账号
--verbose 打印流程信息
--connection-param-file <filename> 可选参数

示例

普通导入:导入mysql库中的help_keyword的数据到HDFS上

导入的默认路径:/user/hadoop/help_keyword

1
2
3
4
5
6
sqoop import   \
--connect jdbc:mysql://hadoop1:3306/mysql \
--username root \
--password root \
--table help_keyword \
-m 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
[hadoop@hadoop3 ~]$ sqoop import   \
> --connect jdbc:mysql://hadoop1:3306/mysql \
> --username root \
> --password root \
> --table help_keyword \
> -m 1
Warning: /home/hadoop/apps/sqoop-1.4.6/../hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
Warning: /home/hadoop/apps/sqoop-1.4.6/../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
18/04/12 13:53:48 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
18/04/12 13:53:48 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
18/04/12 13:53:48 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
18/04/12 13:53:48 INFO tool.CodeGenTool: Beginning code generation
18/04/12 13:53:49 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `help_keyword` AS t LIMIT 1
18/04/12 13:53:49 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `help_keyword` AS t LIMIT 1
18/04/12 13:53:49 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /home/hadoop/apps/hadoop-2.7.5
注: /tmp/sqoop-hadoop/compile/979d87b9521d0a09ee6620060a112d60/help_keyword.java使用或覆盖了已过时的 API。
注: 有关详细信息, 请使用 -Xlint:deprecation 重新编译。
18/04/12 13:53:51 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/979d87b9521d0a09ee6620060a112d60/help_keyword.jar
18/04/12 13:53:51 WARN manager.MySQLManager: It looks like you are importing from mysql.
18/04/12 13:53:51 WARN manager.MySQLManager: This transfer can be faster! Use the --direct
18/04/12 13:53:51 WARN manager.MySQLManager: option to exercise a MySQL-specific fast path.
18/04/12 13:53:51 INFO manager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql)
18/04/12 13:53:51 INFO mapreduce.ImportJobBase: Beginning import of help_keyword
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/home/hadoop/apps/hadoop-2.7.5/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/home/hadoop/apps/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
18/04/12 13:53:52 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
18/04/12 13:53:53 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
18/04/12 13:53:58 INFO db.DBInputFormat: Using read commited transaction isolation
18/04/12 13:53:58 INFO mapreduce.JobSubmitter: number of splits:1
18/04/12 13:53:59 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1523510178850_0001
18/04/12 13:54:00 INFO impl.YarnClientImpl: Submitted application application_1523510178850_0001
18/04/12 13:54:00 INFO mapreduce.Job: The url to track the job: http://hadoop3:8088/proxy/application_1523510178850_0001/
18/04/12 13:54:00 INFO mapreduce.Job: Running job: job_1523510178850_0001
18/04/12 13:54:17 INFO mapreduce.Job: Job job_1523510178850_0001 running in uber mode : false
18/04/12 13:54:17 INFO mapreduce.Job: map 0% reduce 0%
18/04/12 13:54:33 INFO mapreduce.Job: map 100% reduce 0%
18/04/12 13:54:34 INFO mapreduce.Job: Job job_1523510178850_0001 completed successfully
18/04/12 13:54:35 INFO mapreduce.Job: Counters: 30
File System Counters
FILE: Number of bytes read=0
FILE: Number of bytes written=142965
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=87
HDFS: Number of bytes written=8264
HDFS: Number of read operations=4
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Other local map tasks=1
Total time spent by all maps in occupied slots (ms)=12142
Total time spent by all reduces in occupied slots (ms)=0
Total time spent by all map tasks (ms)=12142
Total vcore-milliseconds taken by all map tasks=12142
Total megabyte-milliseconds taken by all map tasks=12433408
Map-Reduce Framework
Map input records=619
Map output records=619
Input split bytes=87
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=123
CPU time spent (ms)=1310
Physical memory (bytes) snapshot=93212672
Virtual memory (bytes) snapshot=2068234240
Total committed heap usage (bytes)=17567744
File Input Format Counters
Bytes Read=0
File Output Format Counters
Bytes Written=8264
18/04/12 13:54:35 INFO mapreduce.ImportJobBase: Transferred 8.0703 KB in 41.8111 seconds (197.6507 bytes/sec)
18/04/12 13:54:35 INFO mapreduce.ImportJobBase: Retrieved 619 records.
[hadoop@hadoop3 ~]$

img

查看导入的文件

1
[hadoop@hadoop4 ~]$ hadoop fs -cat /user/hadoop/help_keyword/part-m-00000

img

导入: 指定分隔符和导入路径

1
2
3
4
5
6
7
8
sqoop import   \
--connect jdbc:mysql://hadoop1:3306/mysql \
--username root \
--password root \
--table help_keyword \
--target-dir /user/hadoop11/my_help_keyword1 \
--fields-terminated-by '\t' \
-m 2

导入数据:带where条件

1
2
3
4
5
6
7
8
sqoop import   \
--connect jdbc:mysql://hadoop1:3306/mysql \
--username root \
--password root \
--where "name='STRING' " \
--table help_keyword \
--target-dir /sqoop/hadoop11/myoutport1 \
-m 1

查询指定列

1
2
3
4
5
6
7
8
9
10
sqoop import   \
--connect jdbc:mysql://hadoop1:3306/mysql \
--username root \
--password root \
--columns "name" \
--where "name='STRING' " \
--table help_keyword \
--target-dir /sqoop/hadoop11/myoutport22 \
-m 1
selct name from help_keyword where name = "string"

导入:指定自定义查询SQL

1
2
3
4
5
6
7
8
9
sqoop import   \
--connect jdbc:mysql://hadoop1:3306/ \
--username root \
--password root \
--target-dir /user/hadoop/myimport33_1 \
--query 'select help_keyword_id,name from mysql.help_keyword where $CONDITIONS and name = "STRING"' \
--split-by help_keyword_id \
--fields-terminated-by '\t' \
-m 4

在以上需要按照自定义SQL语句导出数据到HDFS的情况下:
1、引号问题,要么外层使用单引号,内层使用双引号,$CONDITIONS的$符号不用转义, 要么外层使用双引号,那么内层使用单引号,然后$CONDITIONS的$符号需要转义
2、自定义的SQL语句中必须带有WHERE $CONDITIONS

2、把MySQL数据库中的表数据导入到Hive中

Sqoop 导入关系型数据到 hive 的过程是先导入到 hdfs,然后再 load 进入 hive

普通导入:数据存储在默认的default hive库中,表名就是对应的mysql的表名:

1
2
3
4
5
6
7
sqoop import   \
--connect jdbc:mysql://hadoop1:3306/mysql \
--username root \
--password root \
--table help_keyword \
--hive-import \
-m 1

导入过程

第一步:导入mysql.help_keyword的数据到hdfs的默认路径
第二步:自动仿造mysql.help_keyword去创建一张hive表, 创建在默认的default库中
第三步:把临时目录中的数据导入到hive表中

img

查看数据

1
[hadoop@hadoop3 ~]$ hadoop fs -cat /user/hive/warehouse/help_keyword/part-m-00000

img

指定行分隔符和列分隔符,指定hive-import,指定覆盖导入,指定自动创建hive表,指定表名,指定删除中间结果数据目录

1
2
3
4
5
6
7
8
9
10
11
12
13
sqoop import  \
--connect jdbc:mysql://hadoop1:3306/mysql \
--username root \
--password root \
--table help_keyword \
--fields-terminated-by "\t" \
--lines-terminated-by "\n" \
--hive-import \
--hive-overwrite \
--create-hive-table \
--delete-target-dir \
--hive-database mydb_test \
--hive-table new_help_keyword

报错原因是hive-import 当前这个导入命令。 sqoop会自动给创建hive的表。 但是不会自动创建不存在的库

img

手动创建mydb_test数据块

1
2
3
4
hive> create database mydb_test;
OK
Time taken: 6.147 seconds
hive>

之后再执行上面的语句没有报错

img

查询一下

1
select * from new_help_keyword limit 10;

img

上面的导入语句等价于

1
2
3
4
5
6
7
8
9
10
11
12
sqoop import  \
--connect jdbc:mysql://hadoop1:3306/mysql \
--username root \
--password root \
--table help_keyword \
--fields-terminated-by "\t" \
--lines-terminated-by "\n" \
--hive-import \
--hive-overwrite \
--create-hive-table \
--hive-table mydb_test.new_help_keyword \
--delete-target-dir

增量导入

执行增量导入之前,先清空hive数据库中的help_keyword表中的数据

1
truncate table help_keyword;
1
2
3
4
5
6
7
8
9
10
sqoop import   \
--connect jdbc:mysql://hadoop1:3306/mysql \
--username root \
--password root \
--table help_keyword \
--target-dir /user/hadoop/myimport_add \
--incremental append \
--check-column help_keyword_id \
--last-value 500 \
-m 1

语句执行成功

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
[hadoop@hadoop3 ~]$ sqoop import   \
> --connect jdbc:mysql://hadoop1:3306/mysql \
> --username root \
> --password root \
> --table help_keyword \
> --target-dir /user/hadoop/myimport_add \
> --incremental append \
> --check-column help_keyword_id \
> --last-value 500 \
> -m 1
Warning: /home/hadoop/apps/sqoop-1.4.6/../hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
Warning: /home/hadoop/apps/sqoop-1.4.6/../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
18/04/12 22:01:07 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
18/04/12 22:01:08 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
18/04/12 22:01:08 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
18/04/12 22:01:08 INFO tool.CodeGenTool: Beginning code generation
18/04/12 22:01:08 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `help_keyword` AS t LIMIT 1
18/04/12 22:01:08 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `help_keyword` AS t LIMIT 1
18/04/12 22:01:08 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /home/hadoop/apps/hadoop-2.7.5
注: /tmp/sqoop-hadoop/compile/a51619d1ef8c6e4b112a209326ed9e0f/help_keyword.java使用或覆盖了已过时的 API。
注: 有关详细信息, 请使用 -Xlint:deprecation 重新编译。
18/04/12 22:01:11 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/a51619d1ef8c6e4b112a209326ed9e0f/help_keyword.jar
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/home/hadoop/apps/hadoop-2.7.5/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/home/hadoop/apps/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
18/04/12 22:01:12 INFO tool.ImportTool: Maximal id query for free form incremental import: SELECT MAX(`help_keyword_id`) FROM `help_keyword`
18/04/12 22:01:12 INFO tool.ImportTool: Incremental import based on column `help_keyword_id`
18/04/12 22:01:12 INFO tool.ImportTool: Lower bound value: 500
18/04/12 22:01:12 INFO tool.ImportTool: Upper bound value: 618
18/04/12 22:01:12 WARN manager.MySQLManager: It looks like you are importing from mysql.
18/04/12 22:01:12 WARN manager.MySQLManager: This transfer can be faster! Use the --direct
18/04/12 22:01:12 WARN manager.MySQLManager: option to exercise a MySQL-specific fast path.
18/04/12 22:01:12 INFO manager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql)
18/04/12 22:01:12 INFO mapreduce.ImportJobBase: Beginning import of help_keyword
18/04/12 22:01:12 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
18/04/12 22:01:12 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
18/04/12 22:01:17 INFO db.DBInputFormat: Using read commited transaction isolation
18/04/12 22:01:17 INFO mapreduce.JobSubmitter: number of splits:1
18/04/12 22:01:17 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1523510178850_0010
18/04/12 22:01:19 INFO impl.YarnClientImpl: Submitted application application_1523510178850_0010
18/04/12 22:01:19 INFO mapreduce.Job: The url to track the job: http://hadoop3:8088/proxy/application_1523510178850_0010/
18/04/12 22:01:19 INFO mapreduce.Job: Running job: job_1523510178850_0010
18/04/12 22:01:30 INFO mapreduce.Job: Job job_1523510178850_0010 running in uber mode : false
18/04/12 22:01:30 INFO mapreduce.Job: map 0% reduce 0%
18/04/12 22:01:40 INFO mapreduce.Job: map 100% reduce 0%
18/04/12 22:01:40 INFO mapreduce.Job: Job job_1523510178850_0010 completed successfully
18/04/12 22:01:41 INFO mapreduce.Job: Counters: 30
File System Counters
FILE: Number of bytes read=0
FILE: Number of bytes written=143200
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=87
HDFS: Number of bytes written=1576
HDFS: Number of read operations=4
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Other local map tasks=1
Total time spent by all maps in occupied slots (ms)=7188
Total time spent by all reduces in occupied slots (ms)=0
Total time spent by all map tasks (ms)=7188
Total vcore-milliseconds taken by all map tasks=7188
Total megabyte-milliseconds taken by all map tasks=7360512
Map-Reduce Framework
Map input records=118
Map output records=118
Input split bytes=87
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=86
CPU time spent (ms)=870
Physical memory (bytes) snapshot=95576064
Virtual memory (bytes) snapshot=2068234240
Total committed heap usage (bytes)=18608128
File Input Format Counters
Bytes Read=0
File Output Format Counters
Bytes Written=1576
18/04/12 22:01:41 INFO mapreduce.ImportJobBase: Transferred 1.5391 KB in 28.3008 seconds (55.6875 bytes/sec)
18/04/12 22:01:41 INFO mapreduce.ImportJobBase: Retrieved 118 records.
18/04/12 22:01:41 INFO util.AppendUtils: Creating missing output directory - myimport_add
18/04/12 22:01:41 INFO tool.ImportTool: Incremental import complete! To run another incremental import of all data following this import, supply the following arguments:
18/04/12 22:01:41 INFO tool.ImportTool: --incremental append
18/04/12 22:01:41 INFO tool.ImportTool: --check-column help_keyword_id
18/04/12 22:01:41 INFO tool.ImportTool: --last-value 618
18/04/12 22:01:41 INFO tool.ImportTool: (Consider saving this with 'sqoop job --create')
[hadoop@hadoop3 ~]$

查看结果

img

3、把MySQL数据库中的表数据导入到hbase

普通导入

1
2
3
4
5
6
7
8
sqoop import \
--connect jdbc:mysql://hadoop1:3306/mysql \
--username root \
--password root \
--table help_keyword \
--hbase-table new_help_keyword \
--column-family person \
--hbase-row-key help_keyword_id

此时会报错,因为需要先创建Hbase里面的表,再执行导入的语句

1
2
3
4
5
hbase(main):001:0> create 'new_help_keyword', 'base_info'
0 row(s) in 3.6280 seconds

=> Hbase::Table - new_help_keyword
hbase(main):002:0>